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We show the existence of strange nonchaotic repellers—that is, systems with transient dynamics whose
nonattracting invariant set is fractal, but whose maximum Lyapunov coefficient is zero. We introduce the
concept using a simple one-dimensional map and argue that strange nonchaotic repellers are a general phe-
nomenon, occurring in bifurcation points of transient chaotic systems. All strange nonchaotic systems studied
to date have been attractors; here, it is revealed that strange nonchaotic sets are also present in transient
systems.
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Chaos in dynamical systems can be either persistent or
transient. In the former case, there is an attracting set of
orbits in phase space, towards which trajectories converge
asymptotically. These attractors have usually convoluted,
fractal geometrical structures, and they are called strange
attractors �1�. In this context, “strange” means having a frac-
tal geometry. In the case of transient chaos, there is also a
strange �that is, fractal� invariant set in phase space, but it is
nonattracting, and typical initial conditions do not converge
to it. It is usually referred to as a repeller, or chaotic saddle.
In both cases, chaos is usually characterized by the Lya-
punov exponent, defined over the natural measure of the re-
spective invariant sets. It was found some time ago �2,3� that
there are dynamical systems with attractors which have a
fractal structure, but whose Lyapunov coefficients are non-
positive. In other words, they have strange attractors, but are
nonchaotic. Since then, many such strange nonchaotic at-
tracting systems have been found �4–10� and their properties
have been thoroughly investigated �11–15�. They are also
physically realizable and have been observed in a number of
systems �16,17�. However, to our knowledge all strange non-
chaotic systems studied to date are attractors. This invites the
question: are there systems with strange nonchaotic repellers
�SNCRs�? If so, when are they expected to occur in physical
systems?

We address these questions in this paper. We find that
indeed there are strange nonchaotic repellers and that they
appear when systems presenting transient chaos go through
bifurcations. We show that in SNCRs, even though the
Lyapunov exponent is zero, the escape time is a fractal func-
tion of the initial conditions, with a Cantor set of singulari-
ties where it diverges. This implies that there is a fractal
boundary separating different outcomes of the transient dy-
namics, with a noninteger value of the fractal dimension. We
argue at the end of the paper that this implies a kind of
sensitivity to initial conditions in SNCRs, despite the fact
that they have nonpositive Lyapunov exponents. This means
that for these systems, the connection between the Lyapunov
exponents and sensitivity of the dynamics to initial condi-
tions has to be reexamined.

We present the basic ideas using as an example a simple
family of one-dimensional maps.

One of the simplest and most useful dynamical systems
presenting transient chaos is the well-known tent map. We
want to build a map similar to the tent map, but which has a

nonhyperbolic fixed point at the origin.1 We argue below that
the presence of this nonhyperbolic point causes the
Lyapunov exponent to be zero. At the same time, we want to
preserve the overall topology of the map, so that a complex
symbolic dynamics is possible, analogously to what happens
with the tent map. A natural choice of a map satisfying these
conditions is given by xn+1= f�xn�, where

f�x� = x + Ax�, for x � 1/2,

f�x� = �1 − x� + A�1 − x��, for x � 1/2, �1�

with A and � being real parameters. For �=1 this map re-
duces to the tent map, but for ��1, it has the shape shown
in Fig. 1. If the condition

A � 2�−1 �2�

is satisfied, there is an interval surrounding x=1/2 whose
orbits escape the next iteration, just as for the tent map. The
pre-image of this interval is clearly composed of two inter-
vals, as shown in Fig. 1; these points escape in two itera-
tions. Analogously, the pre-image of this set consists of four
segments, which escape in three iterations, and so on. One
can clearly see that if this process is continued indefinitely,
the set of remaining, nonescaping points has a Cantor-like
structure, albeit not a uniform one such as the one resulting
from the tent map. This is due to the fact that the slope of
map �1� is not constant �in modulus�, as in the tent map.
Nevertheless, the Cantor-set topology is clearly there, and
consequently we expect the escape to have a fractal structure.
In particular, we expect the escape time �the number of itera-
tions before escaping� to have a fractal dependence on the
initial conditions, with a Cantor set of points where it di-
verges, reflecting the Cantor set of the nonescaping points
discussed above.

This is shown to be in fact the case in Fig. 2, which
displays the escape time as a function of the initial value of
x, calculated by numerically iterating Eq. �1� until the es-
cape. The intricate fractal structure is clearly seen in the
successive magnifications. To confirm this fractality, we cal-

1Throughout this paper, we refer to fixed points and periodic
points as hyperbolic if the module of their corresponding eigen-
value is not 1 and nonhyperbolic otherwise.
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culate the �box-counting� fractal dimension d by using the
uncertainty method �18�. This method consists of choosing a
large number of pairs of initial conditions, each pair sepa-
rated by a distance � and each pair lying on a random posi-
tion of the segment �0,1�. If the escape times of the two
corresponding trajectories differ, they are considered to be an
uncertain pair. In this way, we numerically calculate the frac-
tion f��� of uncertain pairs as a function of the separation �.
f��� in most cases satisfies a power law for small enough �,
of the form f�����1−d, where d is the �box-counting� fractal
dimension. We can therefore determine the fractal dimension
numerically �for more details, see Ref. �18��. To achieve
maximum precision, we use an arbitrary-precision numerical
library �19�, which allows us to do the computations with
higher accuracy than the usual machine precision. We were
thus able to calculate f��� for values of � as small as 10−39.
The resulting scaling is shown in Fig. 3, where we see that
there is indeed a well-defined power law. The fractal dimen-
sion is determined from the slope of the fitted line, and the

result is d=0.87. We notice that, even though we only
present the results for �=2, simulations with other values of
� �greater than 1� satisfying Eq. �2� always show a fractal
escape.

We note that there is a relation between the behavior of
maps like f�x� of Eq. �1� and the phenomenon of intermit-
tence �20�. In an intermittent transition to chaos through a
saddle-node bifurcation, at the transition point the dynamics
also has a nonhyperbolic fixed point and, consequently, a
null Lyapunov exponent. Another similarity is that the natu-
ral measure in those intermittent systems is concentrated in
one point. Beyond the transition, at the intermittent regime
proper, the periods of regular behavior followed by bursts of
chaotic motion can be loosely regarded as a kind of escape
phenomenon, somewhat similar to what we study in this
work. However, systems with intermittent chaos are not tran-
sient: it is persistent dynamics governed by a chaotic attrac-
tor, albeit with alternating periods of regular and irregular
behavior. As a result, one cannot define an escape time for
intermittent systems, and thus notions such as fractal escape
functions and the corresponding fractal dimension �Fig. 2�
are not applicable. Another system worth mentioning is the
critical Harper map �21�, which is a two-dimensional map
with all Lyapunov coefficients equal to zero. Some rigorous
results have been obtained for this system. It is shown in �21�
that its dynamics is topologically transitive, which means
that its natural measure is spread throughout the phase space,
in contrast with our system.

We have seen above that there is a strange �or fractal�
invariant set in the dynamics of the maps �1�. We claim that
the Lyapunov exponent for these maps is zero if ��1. This
is a consequence of the behavior of the map near the origin.
From Eq. �1�, we see that f��0�=1 if ��1. The origin is thus
a nonhyperbolic fixed point, with unit eigenvalue. The
Lyapunov exponent h is the average of ln � f��x�� over the
natural measure of the map: h=�ln � f��x� �d��x�. Because
this is an escaping dynamics �we are always assuming con-
dition �2� does hold�, the measure � is “sparse:” it has sup-
port on a fractal set of zero Lebesgue measure. Let I be an
interval contained in �0,1�, and let ��I� denote the natural
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FIG. 1. Map xn+1= f�xn�, with f�x� given by Eq. �1�, for �=2
and A=3. The first two steps in the formation of the fractal nones-
caping set are shown.
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FIG. 2. Escape time T as a function of the initial position x, for
the map of Eq. �1�, with �=2 and A=3. Successive magnifications
show the fractal nature of T�x�.
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FIG. 3. Fraction f��� of uncertain pairs as a function of their
separation �, for the map 1. The fitting to a power law is also
shown, giving f�����0.13, which implies a fractal dimension of d
=0.87.
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measure of I. A finite-time approximation of � is obtained by
considering the position of orbits with initial conditions
picked randomly in �0,1�, which have not escaped after
many iterations. More precisely, considering the set of orbits
which start from a large number of random initial conditions
in �0,1�, let Nn be the total number of these orbits which
have not escaped after 2n iterations. The corresponding ap-
proximate natural measure of I is given by the ratio �n�I�,
defined by �n�I�=Nn�I� /Nn, where Nn�I� is the number of
orbits located in I at the nth iteration, which have not es-
caped after 2n iterations. The exact measure ��I� is found by
taking the limit n→	.

There is an infinite number of periodic orbits in the non-
escaping set of the map �1�. Each of these orbits contributes
to � with some weight, which depends on the dynamics in
the neighborhood of each periodic orbit. The above consid-
erations imply that the weight of a periodic orbit in deter-
mining the Lyapunov exponent h is inversely proportional to
the total rate of escape in their vicinity. Points near hyper-
bolic orbits have an exponential escape rate, determined by
their eigenvalue. But points are also mapped to the vicinity
of periodic orbits, coming from neighborhoods of other pre-
images of the periodic points—a result of the noninvertibility
of one-dimensional chaotic maps. Despite this “nonlocal” ef-
fect, we still expect the overall escape rate in the vicinity of
hyperbolic orbits to be exponential,2 as long as none of the
pre-images is a nonhyperbolic point. Points in the vicinity of
nonhyperbolic periodic orbits behave very differently: their
escape rate is much slower, following a power law of time.
The same considerations discussed above apply, and we
again expect that the resulting escape rate will also be a
power law.

Thus, as the number of iterations increases, the weight of
a nonhyperbolic fixed point becomes ever greater and the
measure �, determined by the infinite-time limit, is domi-
nated by these points. This suggests that the presence of a
nonhyperbolic fixed point causes the Lyapunov exponent of
a map like Eq. �1� to be zero. This is seen to be indeed the
case by calculating finite-time approximations hn for the
Lyapunov exponent, based on the finite-time measures �n
discussed above. This can be done numerically by using the
sprinkler method, presented in detail in Refs. �22,23�. The
result is displayed in Fig. 4�a�. We see that hn decays towards
zero, approximately following hn� t−1 �from nonlinear fitting
to the data shown in the figure�. This shows conclusively that
the Lyapunov exponent of this system is zero. The map �1�
therefore has a strange nonchaotic repeller. As we saw, this
behavior is a consequence of the presence of a nonhyperbolic
fixed point. We have verified that the same happens for other
values of �.

From the above reasoning, we should also expect that the
total number of particles, Nn, which remain in the interval
�0,1� should decay according to a power law, in contrast to
the hyperbolic case, where the decay is exponential. In fact,
since the measure is so concentrated at the origin, this escape
rate must be the rate at which orbits separate from the fixed
point x=0. This is readily calculated from Eq. �1�, and we

find Nn� t1/�1−��. The result of simulating this escape is
shown in Fig. 4�b�. The decay is indeed polynomial, and the
power-law coefficient agrees very well with this prediction.

Nonhyperbolic transient dynamics in one-dimensional
maps has been touched upon in Refs. �24,25�, where it is
called a “border state of chaos.” The source of nonhyperbo-
licity in that case is the divergence of the map’s derivative at
the escaping window’s border for a critical parameter value.
In that case, nonhyperbolicity does not lead to a zero
Lyapunov exponent, as it is not caused by a fixed point with
a unit eigenvalue. As a result, the escape rate is still expo-
nential, and from the point of view of the escape dynamics it
behaves as a hyperbolic chaotic scattering system, even
though its measure is also singular. In other words, it is not a
strange nonchaotic repeller.

As we have seen above, the strange nonchaotic saddle
appears as the result of the presence of a nonhyperbolic fixed
point. This suggests that SNCRs are very general, since non-
hyperbolic orbits appear whenever dynamical systems un-
dergo bifurcations.

The Lyapunov exponent has traditionally been interpreted
as a measure of the sensitivity of a system to initial condi-
tions. But in transient chaos, the sensitivity of the asymptotic
behavior of the dynamics to initial conditions is more natu-
rally represented by the fractal dimension of the repeller. In
SNCRs, the fractal dimension is noninteger, even though the
Lyapunov exponent is zero. The system has a dynamics
which is sensitive to small perturbations of the initial condi-
tions, because the noninteger fractal dimension of the repel-
ler means that it is very hard to know where a trajectory will
eventually go, despite the fact that the Lyapunov exponent is
zero. A similar result was shown recently for strange noncha-
otic attractors �26�: they also have a kind of sensitivity to
initial conditions, even though they do not have positive
Lyapunov exponents. This means that the Lyapunov expo-
nent is not a good measure of sensitivity for these systems.

This work was partially supported by CNPq.2Albeit not with the rate given directly by their eigenvalues.
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FIG. 4. �a� Finite-time approximation hn for the Lyapunov ex-
ponent as a function of the number n of iterations. �b� Number Nn

of orbits remaining in the interval �0,1� after n iterations; the decay
fits the law Nn� t−1. The parameters of the map are in both cases
�=2, A=3.
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